

40 C.F.R. § 62.15390

What equations must I use?

(a) Concentration correction to 7 percent oxygen. Correct any pollutant concentration to 7 percent oxygen using equation 1 of this section:

$$C_{7\%} = C_{unc} * (13.9) * (1/(20.9 - CO_2))$$
 (Eq. 1)

Where:

 $C_{7\%}$ = concentration corrected to 7 percent oxygen. C_{unc} = uncorrected pollutant concentration. C_{O2} = concentration of oxygen (%).

(b) Percent reduction in potential mercury emissions. Calculate the percent reduction in potential mercury emissions ($^{\circ}P_{Hg}$) using equation 2 of this section:

$$%P_{Hg} = (E_i - E_o) * (100 / E_i)$$
 (Eq. 2)

Where:

 $%P_{Hg}$ = percent reduction of potential mercury emissions E_i = mercury emission concentration as measured at the air pollution control device inlet, corrected to 7 percent oxygen, dry basis E_o = mercury emission concentration as measured at the air pollution control device outlet, corrected to 7 percent oxygen, dry basis

(c) *Percent reduction in potential hydrogen chloride emissions.* Calculate the percent reduction in potential hydrogen chloride emissions (%P_{HCl}) using equation 3 of this section:

This document is only available to subscribers. Please log in or purchase access.

Purchase Login