40 C.F.R. § 98.98 ## Definitions. Except as provided in this section, all of the terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of this part. If a conflict exists between a definition provided in this subpart and a definition provided in subpart A, the definition in this subpart takes precedence for the reporting requirements in this subpart. Abatement system means a device or equipment that is designed to destroy or remove fluorinated GHGs or N_2O in exhaust streams from one or more electronics manufacturing production processes, or for which the destruction or removal efficiency for a fluorinated GHG or N_2O has been properly measured according to the procedures under § 98.94(f)(4), even if that abatement system is not designed to destroy or remove fluorinated GHGs or N_2O . The device or equipment is only an abatement system for the individual fluorinated GHGs or N_2O that it is designed to destroy or remove or for the individual fluorinated GHGs or N_2O for which destruction or removal efficiencies were properly measured according to the procedures under § 98.94(f)(4). Actual gas consumption means the quantity of gas used during wafer/substrate processing over some period based on a measured change in gas container weight or gas container pressure or on a measured volume of gas. By-product formation means the creation of fluorinated GHGs during electronics manufacturing production processes or the creation of fluorinated GHGs by an abatement system. Where the procedures in § 98.93(a) are used to calculate annual emissions, by-product formation is the ratio of the mass of the by-product formed to the mass flow of the input gas. Where the procedures in § 98.93(i) are used to calculate annual emissions, by-product formation is the ratio of the mass of the by-product formed to the total mass flow of all fluorinated GHG input gases. *Chamber cleaning* is a process type that consists of the process sub-types defined in paragraphs (1) through (3) of this definition. - (1) In situ plasma process sub-type consists of the cleaning of thin-film production chambers, after processing substrates, with a fluorinated GHG cleaning reagent that is dissociated into its cleaning constituents by a plasma generated inside the chamber where the film is produced. - (2) Remote plasma process sub-type consists of the cleaning of thin-film production chambers, after processing substrates, with a fluorinated GHG cleaning reagent dissociated by a remotely located plasma source. - (3) In situ thermal process sub-type consists of the cleaning of thin-film production chambers, after processing substrates, with a fluorinated GHG cleaning reagent that is thermally dissociated into its cleaning constituents inside the chamber where thin films are produced. This document is only available to subscribers. Please \log in or purchase access. | <u>Purchase</u> <u>Login</u> | | |------------------------------|--| |