

40 C.F.R. § 98.443

Calculating CO2 geologic sequestration.

You must calculate the mass of CO_2 received using CO_2 received equations (Equations RR-1 to RR-3 of this section), unless you follow the procedures in § 98.444(a)(4). You must calculate CO_2 sequestered using injection equations (Equations RR-4 to RR-6 of this section), production/recycling equations (Equations RR-7 to RR-9 of this section), surface leakage equations (Equation RR-10 of this section), and sequestration equations (Equations RR-11 and RR-12 of this section). For your first year of reporting, you must calculate CO_2 sequestered starting from the date set forth in your approved MRV plan.

(a) You must calculate and report the annual mass of CO_2 received by pipeline using the procedures in paragraphs (a)(1) or (a)(2) of this section and the procedures in paragraph (a)(3) of this section, if applicable.

(1) For a mass flow meter, you must calculate the total annual mass of CO_2 in a CO_2 stream received in metric tons by multiplying the mass flow by the CO_2 concentration in the flow, according to Equation RR-1 of this section. You must collect these data quarterly. Mass flow and concentration data measurements must be made in accordance with § 98.444.

$$CO_{27,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$
 (Eq. RR-1)

where:

 $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons). $Q_{r,p}$ = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons). $S_{r,p}$ = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons). $C_{CO2,p,r}$ = Quarterly CO_2 concentration measurement in flow for flow meter r in quarter p (wt. percent CO_2 , expressed as a decimal fraction). p = Quarter of the year. r = Receiving flow meter.

(2) For a volumetric flow meter, you must calculate the total annual mass of CO₂ in a CO₂ stream received in metric tons by multiplying the volumetric flow at standard conditions by the CO₂ concentration in the flow and the density of CO₂ at standard conditions, according to Equation RR-2 of this section. You must collect these data quarterly. Volumetric flow and concentration data measurements must be made in accordance with § 98.444.

$$CO_{27,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
 (Eq. RR-2)

where:

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.

 $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons). $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters). $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters). D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682. $C_{CO2,p,r}$ = Quarterly CO_2 concentration measurement in flow for flow meter r in quarter p (vol. percent CO_2 , expressed as a decimal fraction). p = Quarter of the year. r = Receiving flow meter.

This document is only available to subscribers. Please log in or purchase access.

Purchase Login

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.