40 C.F.R. § 98.33 ## Calculating GHG emissions. You must calculate CO_2 emissions according to paragraph (a) of this section, and calculate CH_4 and N_2O emissions according to paragraph (c) of this section. - (a) CO2emissions from fuel combustion. Calculate CO_2 mass emissions by using one of the four calculation methodologies in paragraphs (a)(1) through (a)(4) of this section, subject to the applicable conditions, requirements, and restrictions set forth in paragraph (b) of this section. Alternatively, for units that meet the conditions of paragraph (a)(5) of this section, you may use CO_2 mass emissions calculation methods from part 75 of this chapter, as described in paragraph (a)(5) of this section. For units that combust both biomass and fossil fuels, you must calculate and report CO_2 emissions from the combustion of biomass separately using the methods in paragraph (e) of this section, except as otherwise provided in paragraphs (a)(5)(iv) and (e) of this section and in § 98.36(d). - (1) *Tier 1 Calculation Methodology.* Calculate the annual CO₂ mass emissions for each type of fuel by using Equation C-1, C-1a, or C-1b of this section (as applicable). - (i) Use Equation C-1 except when natural gas billing records are used to quantify fuel usage and gas consumption is expressed in units of therms or million Btu. In that case, use Equation C-1a or C-1b, as applicable. $$CO_2 = 1 \times 10^{-3} * Fuel * HHV * EF$$ (Eq. C-1) ## where: ${ m CO_2}$ = Annual ${ m CO_2}$ mass emissions for the specific fuel type (metric tons). Fuel = Mass or volume of fuel combusted per year, from company records as defined in § 98.6 (express mass in short tons for solid fuel, volume in standard cubic feet for gaseous fuel, and volume in gallons for liquid fuel). HHV = Default high heat value of the fuel, from Table C-1 of this subpart (mmBtu per mass or mmBtu per volume, as applicable). EF = Fuel-specific default ${ m CO_2}$ emission factor, from Table C-1 of this subpart (kg ${ m CO_2/mmBtu}$). 1 × 10-3 = Conversion factor from kilograms to metric tons. (ii) If natural gas consumption is obtained from billing records and fuel usage is expressed in therms, use Equation C-1a. $$CO_2 = 1 \times 10^{-3} [0.1 * Gas * EF]$$ (Eq. C-1a) ## where: CO_2 = Annual CO_2 mass emissions from natural gas combustion (metric tons). Gas = Annual natural gas usage, from billing records (therms). EF = Fuel-specific default CO_2 emission factor for natural gas, from Table C-1 of this subpart (kg $CO_2/mmBtu$). 0.1 = Conversion factor from therms to mmBtu1 × 10–3 = Conversion factor from kilograms to metric tons. (iii) If natural gas consumption is obtained from billing records and fuel usage is expressed in mmBtu, use Equation C-1b. $$CO_2 = 1 \times 10^{-3} * Gas * EF$$ (Eq. C-1b) where: CO_2 = Annual CO_2 mass emissions from natural gas combustion (metric tons). Gas = Annual natural gas usage, from billing records (mmBtu). EF = Fuel-specific default CO_2 emission factor for natural gas, from Table C-1 of this subpart (kg CO_2 /mmBtu). 1 × 10-3 = Conversion factor from kilograms to metric tons. - (2) Tier 2 Calculation Methodology. Calculate the annual CO_2 mass emissions for each type of fuel by using either Equation C2a or C2c of this section, as appropriate. - (i) Equation C-2a of this section applies to any type of fuel listed in Table C-1 of the subpart, except for municipal solid waste (MSW). For MSW combustion, use Equation C-2c of this section. $$CO_2 = 1 \times 10^{-3} * Fuel * HHV * EF$$ (Eq. C-2a) Where: ${\rm CO}_2$ = Annual ${\rm CO}_2$ mass emissions for a specific fuel type (metric tons). Fuel = Mass or volume of the fuel combusted during the year, from company records as defined in § 98.6 (express mass in short tons for solid fuel, volume in standard cubic feet for gaseous fuel, and volume in gallons for liquid fuel). HHV = Annual average high heat value of the fuel (mmBtu per mass or volume). The average HHV shall be calculated according to the requirements of paragraph (a)(2)(ii) of this section. EF = Fuel-specific default ${\rm CO}_2$ emission factor, from Table C-1 of this subpart (kg ${\rm CO}_2$ /mmBtu). 1 × 10-3 = Conversion factor from kilograms to metric tons. - (ii) The minimum required sampling frequency for determining the annual average HHV (e.g., monthly, quarterly, semi-annually, or by lot) is specified in § 98.34. The method for computing the annual average HHV is a function of unit size and how frequently you perform or receive from the fuel supplier the results of fuel sampling for HHV. The method is specified in paragraph (a)(2)(ii)(A) or (a)(2)(ii)(B) of this section, as applicable. - (A) If the results of fuel sampling are received monthly or more frequently, then for each unit with a maximum rated heat input capacity greater than or equal to 100 mmBtu/hr (or for a group of units that includes at least one unit of that size), the annual average HHV shall be calculated using Equation C-2b of this section. If multiple HHV determinations are made in any month, average the values for the month arithmetically. $$(HHV)_{coround} = \frac{\sum_{i=1}^{n} (HHV)_{i} * (Fuel)_{i}}{\sum_{i=1}^{n} (Fuel)_{i}}$$ (Eq. C-2b) Where: $(HHV)_{annual}$ = Weighted annual average high heat value of the fuel (mmBtu per mass or volume). $>(HHV)_{I}$ = Measured high heat value of the fuel, for sample period "i" (which may be the arithmetic average of multiple determinations), or, if applicable, an appropriate substitute data value (mmBtu per mass or volume). (Fuel) $_{I}$ = Mass or volume of the fuel combusted during the sample period "i," (e.g., monthly, quarterly, semi-annually, or by lot) from company records (express mass in short tons for solid fuel, volume in standard cubic feet (e.g., for gaseous fuel, and volume in gallons for liquid fuel). n = Number of sample periods in the year. - (B) If the results of fuel sampling are received less frequently than monthly, or, for a unit with a maximum rated heat input capacity less than 100 mmBtu/hr (or a group of such units) regardless of the HHV sampling frequency, the annual average HHV shall either be computed according to paragraph (a)(2)(ii)(A) of this section or as the arithmetic average HHV for all values for the year (including valid samples and substitute data values under § 98.35). - (iii) For units that combust municipal solid waste (MSW) and that produce steam, use Equation C-2c of this section. Equation C-2c of this section may also be used for any other solid fuel listed in Table C-1 of this subpart provided that steam is generated by the unit. Where: CO_2 = Annual CO_2 mass emissions from MSW or solid fuel combustion (metric tons). Steam = Total mass of steam generated by MSW or solid fuel combustion during the reporting year (lb steam). B = Ratio of the boiler's maximum rated heat input capacity to its design rated steam output capacity (mmBtu/lb steam). EF = Fuel-specific default CO_2 emission factor, from Table C-1 of this subpart (kg CO_2 /mmBtu). $1 \times 10 - 3$ = Conversion factor from kilograms to metric tons. - (3) Tier 3 Calculation Methodology. Calculate the annual CO_2 mass emissions for each fuel by using either Equation C3, C4, or C5 of this section, as appropriate. - (i) For a solid fuel, use Equation C-3 of this section. $$CO_2 = \frac{44}{12} * Fuel * CC * 0.91$$ (Eq. C-3) Where: CO_2 = Annual CO_2 mass emissions from the combustion of the specific solid fuel (metric tons). Fuel = Annual mass of the solid fuel combusted, from company records as defined in § 98.6 (short tons). CC = Annual average carbon content of the solid fuel (percent by weight, expressed as a decimal fraction, e.g., 95% = 0.95). The annual average carbon content shall be determined using the same procedures as specified for HHV in paragraph (a)(2) (ii) of this section. 44/12 = Ratio of molecular weights, CO_2 to carbon. 0.91 = Conversion factor from short tons to metric tons. (ii) For a liquid fuel, use Equation C-4 of this section. $$CO_2 = \frac{44}{12} * Fuel * CC * 0.001$$ (Eq. C-4) Where: Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>. v v 11 C 1 C . ${\rm CO_2}$ = Annual ${\rm CO_2}$ mass emissions from the combustion of the specific liquid fuel (metric tons). Fuel = Annual volume of the liquid fuel combusted (gallons). The volume of fuel combusted must be measured directly, using fuel flow meters calibrated according to § 98.3(i). Fuel billing meters may be used for this purpose. Tank drop measurements may also be used. CC = Annual average carbon content of the liquid fuel (kg C per gallon of fuel). The annual average carbon content shall be determined using the same procedures as specified for HHV in paragraph (a)(2)(ii) of this section. 44/12 = Ratio of molecular weights, ${\rm CO_2}$ to carbon. 0.001 = Conversion factor from kg to metric tons. (iii) For a gaseous fuel, use Equation C-5 of this section. $$CO_2 = \frac{44}{12} * Fuel * CC * \frac{MW}{MVC} * 0.001$$ (Eq. C-5) Where: CO_2 = Annual CO_2 mass emissions from combustion of the specific gaseous fuel (metric tons). Fuel = Annual volume of the gaseous fuel combusted (scf). The volume of fuel combusted must be measured directly, using fuel flow meters calibrated according to § 98.3(i). Fuel billing meters may be used for this purpose. CC = Annual average carbon content of the gaseous fuel (kg C per kg of fuel). The annual average carbon content shall be determined using the same procedures as specified for HHV in paragraph (a)(2)(ii) of this section. MW = Annual average molecular weight of the gaseous fuel (kg/kg-mole). The annual average molecular weight shall be determined using the same procedures as specified for HHV in paragraph (a)(2)(ii) of this section. MVC = - (iv) Fuel flow meters that measure mass flow rates may be used for liquid or gaseous fuels, provided that the fuel density is used to convert the readings to volumetric flow rates. The density shall be measured at the same frequency as the carbon content. You must measure the density using one of the following appropriate methods. You may use a method published by a consensus-based standards organization, if such a method exists, or you may use industry standard practice. Consensus-based standards organizations include, but are not limited to, the following: ASTM International (100 Barr Harbor Drive, P.O. Box CB700, West Conshohocken, Pennsylvania 19428-B2959, (800) 262-1373, http://www.astm.org), the American National Standards Institute (ANSI, 1819 L Street, NW., 6th floor, Washington, DC 20036, (202) 293-8020, http://www.ansi.org), the American Gas Association (AGA), 400 North Capitol Street, NW., 4th Floor, Washington, DC 20001, (202) 824-7000, http://www.aga.org), the American Society of Mechanical Engineers (ASME, Three Park Avenue, New York, NY 10016-5990, (800) 843-2763, http://www.asme.org), the American Petroleum Institute (API, 1220 L Street, NW., Washington, DC 20005-4070, (202) 682-8000, http://www.api.org), and the North American Energy Standards Board (NAESB, 801 Travis Street, Suite 1675, Houston, TX 77002, (713) 356-0060, http://www.api.org). The method(s) used shall be documented in the GHG Monitoring Plan required under § 98.3(g)(5). - (v) The following default density values may be used for fuel oil, in lieu of using the methods in paragraph (a)(3) (iv) of this section: 6.8 lb/gal for No. 1 oil; 7.2 lb/gal for No. 2 oil; 8.1 lb/gal for No. 6 oil. - (4) *Tier 4 Calculation Methodology.* Calculate the annual CO₂ mass emissions from all fuels combusted in a unit, by using quality-assured data from continuous emission monitoring systems (CEMS). This document is only available to subscribers. Please log in or purchase access. Purchase Login