

40 C.F.R. § 461.14

Pretreatment standards for existing sources (PSES).

- (a) Except as provided in 40 CFR 403.7 and § 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the pretreatment standards for existing sources listed below:
- (1) Subpart A—Electrodeposited Anodes.

PSES

Pollutant or pollutant property	Maximum for any 1 day	Maximum for monthly average			
	Metric units—mg/kg of cadmium				
	English units—pounds per 1,000,000 pounds of cadmium				
Cadmium	11.95	5.27			
Nickel	67.49	44.64			
Zinc	51.32	21.44			
Cobalt	7.38	3.16			

(2) Subpart A—Impregnated Anodes.

PSES

Pollutant or pollutant property	Maximum for any 1 day	Maximum for monthly average			
	Metric units—mg/kg of cadmium				
	English units—pounds per 1,000,000 pounds of cadmium				
Cadmium	68.0	30.0			
Nickel	384.0	254.0			
Zinc	292.0	122.0			
Cobalt	42.0	18.0			

This document is only available to subscribers. Please log in or purchase access.

	<u>Purchase</u> <u>Log</u>	<u>çin</u>	