

40 C.F.R. § 1065.642

PDP, SSV, and CFV molar flow rate calculations.

This section describes the equations for calculating molar flow rates from various flow meters. After you calibrate a flow meter according to § 1065.640, use the calculations described in this section to calculate flow during an emission test.

(a) *PDP molar flow rate.* (1) Based on the speed at which you operate the PDP for a test interval, select the corresponding slope, a_{1} , and intercept, a_{0} , as calculated in § 1065.640, to calculate PDP molar flow rate,, as follows:

$$\dot{n} = f_{\text{nPDP}} \cdot \frac{V_{\text{rev}} \cdot p_{\text{in}}}{R \cdot T_{\text{in}}}$$

Eq. 1065.642-1

Where:

 $f_{\rm nPDP}$ = pump speed. $V_{\rm rev}$ = PDP volume pumped per revolution, as determined in paragraph (a)(2) of this section. $p_{\rm in}$ = static absolute pressure at the PDP inlet. R = molar gas constant. $T_{\rm in}$ = absolute temperature at the PDP inlet.

(2) Calculate V_{rev} using the following equation:

$$V_{\text{rev}} = \frac{a_1}{f_{\text{nPDP}}} \cdot \sqrt{\frac{p_{\text{out}} - p_{\text{in}}}{p_{\text{out}}}} + a_0$$

Eq. 1065.642-2

 p_{out} = static absolute pressure at the PDP outlet.

Example:

 a_1 = 0.8405 (m /s) $f_{\rm nPDP}$ = 12.58 r/s $P_{\rm out}$ = 99.950 kPa $P_{\rm in}$ = 98.575 kPa = 98575 Pa = 98575 kg/(m·s) a_0 = 0.056 (m /r) R = 8.314472 J/(mol·K) = 8.314472 (m·kg)/(s·mol·K) $T_{\rm in}$ = 323.5 K

$$V_{rev} = \frac{0.8405}{12.58} \cdot \sqrt{\frac{99.950 - 98.575}{99.950}} + 0.056$$
$$\dot{n} = 12.58 \cdot \frac{98575 \cdot 0.06383}{8.314472 \cdot 323.5}$$

n = 29.428 mol/s

This document is only available to subscribers. Please log in or purchase access.

Purchase Login

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.

