## 40 C.F.R. § 1065.512 ## Duty cycle generation. - (a) Generate duty cycles according to this section if the standard-setting part requires engine mapping to generate a duty cycle for your engine configuration. The standard-setting part generally defines applicable duty cycles in a normalized format. A normalized duty cycle consists of a sequence of paired values for speed and torque or for speed and power. - (b) Transform normalized values of speed, torque, and power using the following conventions: - (1) Engine speed for variable-speed engines. For variable-speed engines, normalized speed may be expressed as a percentage between warm idle speed, $f_{\rm nidle}$ , and maximum test speed, $f_{\rm ntest}$ , or speed may be expressed by referring to a defined speed by name, such as "warm idle," "intermediate speed," or "A," "B," or "C" speed. Section 1065.610 describes how to transform these normalized values into a sequence of reference speeds, $f_{\rm nref}$ . Running duty cycles with negative or small normalized speed values near warm idle speed may cause low-speed idle governors to activate and the engine torque to exceed the reference torque even though the operator demand is at a minimum. In such cases, we recommend controlling the dynamometer so it gives priority to follow the reference torque instead of the reference speed and let the engine govern the speed. Note that the cycle-validation criteria in § 1065.514 allow an engine to govern itself. This allowance permits you to test engines with enhanced-idle devices and to simulate the effects of transmissions such as automatic transmissions. For example, an enhanced-idle device might be an idle speed value that is normally commanded only under cold-start conditions to quickly warm up the engine and aftertreatment devices. In this case, negative and very low normalized speeds will generate reference speeds below this higher enhanced-idle speed. You may do either of the following when using enhanced-idle devices: This document is only available to subscribers. Please log in or purchase access. Purchase Login