

40 C.F.R. § 60.764

Test methods and procedures.

(a)

(1) *NMOC emission rate.* The landfill owner or operator must calculate the NMOC emission rate using either Equation 1 provided in paragraph (a)(1)(i) of this section or Equation 2 provided in paragraph (a)(1)(ii) of this section. Both Equation 1 and Equation 2 may be used if the actual year-to-year solid waste acceptance rate is known, as specified in paragraph (a)(1)(i) of this section, for part of the life of the landfill and the actual year-to-year solid waste acceptance rate is unknown, as specified in paragraph (a)(1)(i) of this section, for part of the life of the landfill. The values to be used in both Equation 1 and Equation 2 are 0.05 per year for k, 170 cubic meters per megagram for L_0 , and 4,000 parts per million by volume as hexane for the C_{NMOC} . For landfills located in geographical areas with a 30-year annual average precipitation of less than 25 inches, as measured at the nearest representative official meteorologic site, the k value to be used is 0.02 per year.

(i)

(A) Equation 1 must be used if the actual year-to-year solid waste acceptance rate is known.

$$M_{JBMOC} = \sum_{i=1}^{n} 2 \text{ k } L_o M_i \left(e^{-it} i \right) (C_{JBMOC}) (3.6 \times 10^{-9})$$

(Eq. 1)

Where:

 M_{NMOC} = Total NMOC emission rate from the landfill, megagrams per year. k = Methane generation rate constant, year-1. L₀ = Methane generation potential, cubic meters per megagram solid waste. M_i = Mass of solid waste in the i th section, megagrams. t_i = Age of the i th section, years. C_{NMOC} = Concentration of NMOC, parts per million by volume as hexane. 3.6 × 10-9 = Conversion factor.

(B) The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value for M_i if documentation of the nature and amount of such wastes is maintained.

(ii)

(A) Equation 2 must be used if the actual year-to-year solid waste acceptance rate is unknown.

 $M_{NMOC} = 2L_0R \ (e^{-kc_-e^{-kt}}) \ C_{NMOC} (3.6 \times 10^{-9})$ (Eq.2)

Where:

M_{NMOC} = Mass emission rate of NMOC, megagrams per year. L_o = Methane generation potential, cubic meters

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.

per megagram solid waste. R = Average annual acceptance rate, megagrams per year. k = Methane generation rate constant, year-1. t = Age of landfill, years. C_{NMOC} = Concentration of NMOC, parts per million by volume as hexane. c = Time since closure, years; for active landfill c = 0 and e-kc = 1.3.6 × 10-9 = Conversion factor.

(B) The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value of R, if documentation of the nature and amount of such wastes is maintained.

(2) *Tier 1.* The owner or operator must compare the calculated NMOC mass emission rate to the standard of 34 megagrams per year.

(i) If the NMOC emission rate calculated in paragraph (a)(1) of this section is less than 34 megagrams per year, then the landfill owner or operator must submit an NMOC emission rate report according to § 60.767(b), and must recalculate the NMOC mass emission rate annually as required under § 60.762(b).

(ii) If the calculated NMOC emission rate as calculated in paragraph (a)(1) of this section is equal to or greater than 34 megagrams per year, then the landfill owner must either:

(A) Submit a gas collection and control system design plan within 1 year as specified in § 60.767(c) and install and operate a gas collection and control system within 30 months according to § 60.762(b)(2)(ii) and (iii);

(B) Determine a site-specific NMOC concentration and recalculate the NMOC emission rate using the Tier 2 procedures provided in paragraph (a)(3) of this section; or

(C) Determine a site-specific methane generation rate constant and recalculate the NMOC emission rate using the Tier 3 procedures provided in paragraph (a)(4) of this section.

(3) Tier 2. The landfill owner or operator must determine the site-specific NMOC concentration using the following sampling procedure. The landfill owner or operator must install at least two sample probes per hectare, evenly distributed over the landfill surface that has retained waste for at least 2 years. If the landfill is larger than 25 hectares in area, only 50 samples are required. The probes should be evenly distributed across the sample area. The sample probes should be located to avoid known areas of nondegradable solid waste. The owner or operator must collect and analyze one sample of landfill gas from each probe to determine the NMOC concentration using Method 25 or 25C of appendix A of this part. Taking composite samples from different probes into a single cylinder is allowed; however, equal sample volumes must be taken from each probe. For each composite, the sampling rate, collection times, beginning and ending cylinder vacuums, or alternative volume measurements must be recorded to verify that composite volumes are equal. Composite sample volumes should not be less than one liter unless evidence can be provided to substantiate the accuracy of smaller volumes. Terminate compositing before the cylinder approaches ambient pressure where measurement accuracy diminishes. If more than the required number of samples are taken, all samples must be used in the analysis. The landfill owner or operator must divide the NMOC concentration from Method 25 or 25C of appendix A of this part by six to convert from C_{NMOC} as carbon to C_{NMOC} as hexane. If the landfill has an active or passive gas removal system in place, Method 25 or 25C samples may be collected from these systems instead of surface probes provided the removal system can be shown to provide sampling as representative as the two sampling probe per hectare requirement. For active collection systems, samples may be collected from the common header pipe. The sample location on the common header pipe must be before any gas moving, condensate removal, or treatment system equipment. For active collection systems, a minimum of three samples must be collected from the header pipe.

This document is only available to subscribers. Please log in or purchase access.

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.

Purchase Login

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.