

40 C.F.R. § 60.104a

Performance tests.

(a) The owner or operator shall conduct a performance test for each FCCU, FCU, sulfur recovery plant and fuel gas combustion device to demonstrate initial compliance with each applicable emissions limit in § 60.102a and conduct a performance test for each flare to demonstrate initial compliance with the H₂S

concentration requirement in § 60.103a(h) according to the requirements of § 60.8. The notification requirements of § 60.8(d) apply to the initial performance test and to subsequent performance tests required by paragraph (b) of this section (or as required by the Administrator), but does not apply to performance tests conducted for the purpose of obtaining supplemental data because of continuous monitoring system breakdowns, repairs, calibration checks and zero and span adjustments.

- (b) The owner or operator of a FCCU or FCU that elects to monitor control device operating parameters according to the requirements in § 60.105a(b), to use bag leak detectors according to the requirements in § 60.105a(c), or to use COMS according to the requirements in § 60.105a(e) shall conduct a PM performance test at least annually (*i.e.*, once per calendar year, with an interval of at least 8 months but no more than 16 months between annual tests) and furnish the Administrator a written report of the results of each test.
- (c) In conducting the performance tests required by this subpart (or as requested by the Administrator), the owner or operator shall use the test methods in 40 CFR part 60, Appendices A-1 through A-8 or other methods as specified in this section, except as provided in § 60.8(b).
- (d) The owner or operator shall determine compliance with the PM, NO_X, SO₂, and CO emissions limits in § 60.102a(b) for FCCU and FCU using the following methods and procedures:
- (1) Method 1 of appendix A-1 to part 60 for sample and velocity traverses.
- (2) Method 2 of appendix A-1 to part 60 for velocity and volumetric flow rate.

(3) Method 3, 3A, or 3B of appendix A-2 to part 60 for gas analysis. The method ANSI/ASME PTC 19.10-1981, "Flue and Exhaust Gas Analyses," (incorporated by reference—see § 60.17) is an acceptable alternative to EPA Method 3B of appendix A-2 to part 60.

(4) Method 5, 5B, or 5F of appendix A-3 to part 60 for determining PM emissions and associated moisture content from a FCCU or FCU without a wet scrubber subject to the emissions limit in § 63.102a(b)(1). Use Method 5 or 5B of appendix A-3 to part 60 for determining PM emissions and associated moisture content from a FCCU or FCU with a wet scrubber subject to the emissions limit in § 63.102a(b)(1).

(i) The PM performance test consists of 3 valid test runs; the duration of each test run must be no less than 60 minutes.

(ii) The emissions rate of PM (E_{PM}) is computed for each run using Equation 5 of this section:

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.

$$E = \frac{c_s Q_{sd}}{K R_c}$$
 (Eq. 5)

Where:

E = Emission rate of PM, g/kg (lb/1,000 lb) of coke burn-off; c_s = Concentration of total PM, grams per dry standard cubic meter (g/dscm) (gr/dscf); Q_{sd} = Volumetric flow rate of effluent gas, dry standard cubic meters per hour (dry standard cubic feet per hour); R_c = Coke burn-off rate, kilograms per hour (kg/hr) [lb per hour (lb/hr)] coke; and K = Conversion factor, 1.0 grams per gram (7,000 grains per lb).

(iii) The coke burn-off rate (R_c) is computed for each run using Equation 6 of this section:

$$R_{c} = K_{1}Q_{r}(\%CO_{2} + \%CO) + K_{2}Q_{a} - K_{3}Q_{r}(\%CO_{2} + \%CO_{2} + \%O_{2}) + K_{3}Q_{axy}(\%O_{axy})$$
(Eq. 6)

Where:

 R_c = Coke burn-off rate, kg/hr (lb/hr); Q_r = Volumetric flow rate of exhaust gas from FCCU regenerator or fluid coking burner before any emissions control or energy recovery system that burns auxiliary fuel, dry standard cubic meters per minute (dscm/min) [dry standard cubic feet per minute (dscf/min)]; Q_a = Volumetric flow rate of air to FCCU regenerator or fluid coking burner, as determined from the unit's control room instrumentation, dscm/min (dscf/min); Q_{oxy} = Volumetric flow rate of O_2 enriched air to FCCU regenerator or fluid coking unit, as determined from the unit's control room instrumentation, dscm/min (dscf/min); $%CO_2$ = Carbon dioxide (CO₂) concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); %CO = CO concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); $%O_{0xy} = O_2$ concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); $%O_{0xy} = O_2$ concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); $%O_{0xy} = O_2$ concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); $%O_{0xy} = O_2$ concentration in FCCU regenerator or fluid coking burner exhaust, percent by volume (dry basis); $%O_{0xy} = O_2$ concentration in O_2 enriched air stream inlet to the FCCU regenerator or fluid coking burner, percent by volume (dry basis); K_1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dscm-%) [0.0186 (lb-min)/(hr-dscf)]; and K_3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb-min)/(hr-dscf-%)].

This document is only available to subscribers. Please log in or purchase access.

Purchase Login

Copyright © 2024 by Society of Corporate Compliance and Ethics (SCCE) & Health Care Compliance Association (HCCA). No claim to original US Government works. All rights reserved. Usage is governed under this website's <u>Terms of Use</u>.